1.5 Science and Society

The Scientific Revolution


An often-overlooked facet of the Scientific Revolution was the participation of aristocratic women. Noblewomen were often the collaborators of their husbands or fathers – for example, it was a husband and wife team, the Lavoisiers, in France that invented the premises of modern chemistry in the eighteenth century. In some cases, such as the early entomologist Maria Sibylla Merian, women struck out on their own and conducted experiments and expeditions – Merian took a research trip to South America and did pioneering work on the life cycles of various insect species.

Merian, Maria Sibylla. Metamorphosis insectorum Surinamensium. 1705.
Merian, Maria Sibylla. Metamorphosis insectorum Surinamensium. 1705. Wikimedia. January 1, 2008.


A few male theorists supported a proto-feminist outlooks as well. The French scholar François Poulain de la Barre (1647-1725) concluded that empirical observation demonstrated that the custom of male dominance in European society was just that: a custom. Nothing about pregnancy or childbearing made women inherently unsuitable to participate in public life. De la Barre applied a similar argument to non-European peoples, arguing that there were only cosmetic differences between what would later be called “races.” His work was almost unprecedented in its egalitarian vision, anticipating the ideas of human universalism that only really came of age in the nineteenth century, and only became dominant views in the twentieth.

Despite the existence of highly-qualified and educated women scientists, informal rules banned them from joining scientific societies or holding university positions. In general, in one of the most obvious failures of the Scientific Revolution to overcome social prejudices was in the marked tendency of male scientists to use the new science to reinforce rather than overthrow sexist stereotypes. Anatomical drawings drew attention to the fact that women had wider hips than did men, which supposedly “destined” them for a primary function of childbearing. Likewise, they inaccurately depicted women as having smaller skulls, supposedly implying lower intelligence. In fields in which women had held very important social roles in the past, such as midwifery, male scientists and doctors increasingly pushed them to the side, insisting on a male-dominated “scientific” superiority of technique. In short, it proved easier to overthrow the entire vision of the universe than to upset sexual roles and stereotypes.

Scientific Culture

Many developments in the early part of the Scientific Revolution occurred in Catholic countries such as Italy, but over time the center of scientific development shifted north and west. While many Protestants, including Luther himself, were just as hostile as were Catholics to new scientific ideas at first, in the long term Protestant governments proved more tolerant of ideas that seemed to violate the literal truth of the Bible. This had less to do with some kind of inherent tolerance in Protestantism than to the fact that Protestant institutions were less powerful and pervasive than was the Roman church in Catholic countries.

In the Netherlands and England in particular it was possible to openly publish and/or champion scientific ideas without fear of a backlash; in the case of Newton, it was possible to be outright famous. In general, Protestant governments and elites were more open to the idea that God might reveal Himself in nature itself, not just in holy scripture, and thus they were sympathetic to the piety of scientific research. Ultimately, this increased tolerance and support of science would see the center of scientific innovation in the northwest of Europe, not in the heart of the earlier Renaissance in Italy.

France was not to be underestimated as a site of discovery, due in part to the cosmopolitanism of Paris and the traditional power of the French kings in holding the papacy at arm’s length. The Royal Academy of Sciences in France was opened in the same year as its sister organization, the Royal Society, in England (1662). Both funded scientific efforts that were “useful” in the sense of serving shipping and military applications as well as those which were more purely experimental, as in astronomy. The English Royal Society was particularly focused on military applications, especially optics and ballistics, setting a pattern of state-funded science in the service of war that continues to this day.

The English and French scientific societies were important parts of the development of a larger “Republic of Science,” the predecessor to present-day “academia.” Learned men (and some women) from all over Europe attended lectures, corresponded, and carried out their own scientific experiments. Newton was the president of the Royal Society, which published Philosophical Transactions of the Royal Society, the forerunner to academic journals that remain the backbone of scholarship today.

Royal Society of London. "Philosophical Transactions of the Royal Society, Vol. 1 Cover page." 1665 – 1666.
Royal Society of London. “Philosophical Transactions of the Royal Society, Vol. 1 Cover page.” 1665 – 1666. Wikimedia. March 9, 2010.


Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

PPSC HIS 1320: Western Civilization: 1650-Present by Wayne Artis, Sarah Clay, and Kim Fujikawa is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book