53 6.4 Sedimentary Structures and Fossils — Physical Geology – 2nd Edition
Cross-bedding is bedding that contains angled layers within otherwise horizontal beds, and it forms when sediments are deposited by flowing water or wind. Some examples are shown in Figures 6.0.11, 6.1.7b, and 6.4.2. Cross-beds formed in streams tend to be on the scale of centimetres to tens of centimetres, while those in aeolian (wind deposited) sediments can be on the scale of metres to several metres.
Cross-beds form as sediments are deposited on the leading edge of an advancing ripple or dune under steady state conditions (similar flow rate and same flow direction). Each layer is related to a different ripple that advances in the direction of flow, and is partially eroded by the following ripple (Figure 6.4.3). Cross-bedding is a very important sedimentary structure to be able to recognize because it can provide information on the process of deposition, the direction of current flows and, when analyzed in detail, on other features like the rate of flow and the amount of sediment available.
Graded bedding is characterized by a gradation in grain size from bottom to top within a single bed. “Normal” graded beds are coarse at the bottom and become finer toward the top. They are a product of deposition from a slowing current (Figure 6.4.4). Most graded beds form in a submarine-fan environment (see Figure 6.4.1), where sediment-rich flows descend periodically from a shallow marine shelf down a slope and onto the deeper sea floor. Some graded beds are reversed (coarser at the top), and this normally results from deposition by a fast-moving debris flow (see Chapter 15).
Ripples, which are associated with the formation of cross-bedding, may be preserved on the surfaces of sedimentary beds. Ripples can also help to determine flow direction as they tend to have their steepest surface facing in the direction of the flow (see Figure 6.4.3).
In a stream environment, boulders, cobbles, and pebbles can become imbricated, meaning that they are generally tilted in the same direction. Clasts in streams tend to tilt with their upper ends pointing downstream because this is the most stable position with respect to the stream flow (Figure 6.4.5 and Figure 6.1.7c).
Mud cracks form when a shallow body of water (e.g., a tidal flat or pond or even a puddle), into which muddy sediments have been deposited, dries up and cracks (Figure 6.4.6). This happens because the clay in the upper mud layer tends to shrink on drying, and so it cracks because it occupies less space when it is dry.
The various structures described above are critical to understanding and interpreting the conditions that existed during the formation of sedimentary rocks. In addition to these, geologists also look very closely at sedimentary grains to determine their mineralogy or lithology (in order to make inferences about the type of source rock and the weathering processes), their degree of rounding, their sizes, and the extent to which they have been sorted by transportation and depositional processes. Some of the types of differences that we might want to look for are illustrated in Figure 6.4.7.
We won’t be covering fossils in any detail in this book, but they are extremely important for understanding sedimentary rocks. Of course, fossils can be used to date sedimentary rocks, but equally importantly, they tell us a great deal about the depositional environment of the sediments and the climate at the time. For example, they can help to differentiate marine versus terrestrial environments; estimate the depth of the water; detect the existence of currents; and estimate average temperature and precipitation. For example, the tests of tiny marine organisms (mostly foraminifera) have been recovered from deep-ocean sediment cores from all over the world, and their isotopic signatures have been measured. As we’ll see in Chapter 19, this has provided us with information about the changes in average global temperatures over the past 65 million years.
Sedimentary rocks can tell us a great deal about the environmental conditions that existed during the time of their formation. Make some inferences about the source rock, weathering environment, type and distance of sediment transportation, and deposition conditions that existed during the formation of the following rocks:
- Quartz sandstone: no feldspar, well-sorted and well-rounded quartz grains, cross-bedding
- Feldspathic sandstone and mudstone: feldspar, volcanic fragments, angular grains, repetitive graded bedding from sandstone upwards to mudstone
- Conglomerate: well-rounded pebbles and cobbles of granite and basalt; imbrication
- Breccia: poorly sorted, angular limestone fragments; orange-red matrix
See Appendix 3 for Exercise 6.4 answers.
Media Attributions
- Figures 6.4.1, 6.4.2, 6.4.3, 6.4.4, 6.4.5, 6.4.6, 6.4.7: © Steven Earle. CC BY.
<!– pb_fixme –>
<!– pb_fixme –>